Electromagnetic Induction

	Reason (R): The emf induced in a closed circuit is directly proportional to the rate of change of flux associated with the coil.	
	 A. Both assertion and reason are true and reason is the correct explanation of assertion. B. Both assertion and reason are true but reason is NOT the correct explanation of assertion. C. Assertion is true but reason is false. D. Assertion is false but reason is true. 	
Q.81	Two statements are given below. One is labelled Assertion (A) and the other is labelled Reason (R). Read the statements carefully and choose the option that correctly describes statements A and R.	1
	Assertion (A): The induced emf in a coil increases if the resistance of the coil is increased.	
	Reason (R): Higher the resistance, the less the current through a coil.	
	Select the correct option.	
	A. Both assertion and reason are true and reason is the correct explanation for assertion.	
	B. Both assertion and reason are true but reason is not the correct explanation for assertion.	
	C. Assertion is true but the reason is false.	
	D. Assertion is faise but the reason is true.	
Q.82	The following graphs represent emf induced with the rate of change of current for two different inductors.	1
	E T di/dt	
	Which of the given options correctly represents the energy stored versus current through these inductors?	

	Fig iii : $r > R$, Normal to the plane of coil subtends an angle 30° with the axis of the solenoid	
Q.89	A long straight wire carrying a current of 0.1 A is placed at a distance of 10 m from a small conducting square loop in the same plane. The side of the square is 11 mm and the resistance of the square is 3 ohms. An external agent gradually changes the shape of the square loop to nearly a circle in 2 seconds. What is the average induced current in the loop?	3
Q.90	A conducting circular coil of radius 2 cm translates with a uniform velocity of 'v' in a uniform magnetic field as shown below. X X X X X X X X X X X X X X X X X X	4
Q.91	A circular loop of conducting wire is placed in a time-varying magnetic field such that the plane of the loop is perpendicular to the magnetic field. The graph below represents the variation of the magnetic field with time.	5

Answer key and Marking Scheme

Q.No	Answers	Marks
Q.79	C. Graphs 4, 1 and 3	1
Q.80	D. Assertion is false but reason is true.	1
Q.81	D. Assertion is false but the reason is true.	1
Q.82		1
Q.83	D. D	1
Q.84	C. A is true but R is false	1
Q.85	For Fig a :	3
	$\varepsilon = v_{\perp}I B = vIB \sin\theta$	
	[0.5 mark for correct formula and 0.5 mark for correct representation of the battery]	
	For Fig b :	
	$\varepsilon = v_{\perp} I B = v I B \cos \theta$	
	P Q	
	[0.5 mark for correct formula and 0.5 mark for correct representation of the battery]	
	For Fig c :	
	ε = 0	

	= $100 \times 4\pi \times 10^{-7} \times 100 \times \pi \times r^2 \times 2$	
	$= 8\pi^2 r^2 \times 10^{-3}$	
	[1 mark for the correct result of rate of change in flux of C]	
	c. Induced emf in coil C	
	$\epsilon = \Delta \Phi_{\rm C} / \Delta t = 8\pi^2 r^2 \times 10^{-3} \text{ V}$	
	Induced current I through coil C	
	$= \epsilon / R = (8\pi^2 r^2 x 10^{-3})/5$	
	[1 mark for the correct result of induced current in C]	
	d. Induced Current I'	
	= $[8\pi^2(3r/2)^2 \times 10^{-3}]/5$	
	$1'/1 = (3/2)^2 = 9/4$	
	I' = 9I/4 = 2.25 I	
	The induced current increases by a factor of 2.25	
	[0.5 mark for correct final answer]	
Q.88	Fig i :	3
	Here $\theta = 0$,	
	$\phi_{in} = B_{in} A \cos \theta$	
	$\phi_{in} = \frac{\mu_0 N I}{I} \pi R^2 COSU$ $\phi_{in} = \frac{\mu_0 N I}{I} \pi R^2$	
	$\Phi_{out} = 0$ (Magnetic field outside the solenoid is zero.)	
	$\phi_c = \phi_{in} + \phi_{out}$	
	$\phi_c = \frac{\mu_0 N I}{I} \pi R^2$	
	[1 mark for the correct result]	
	Fig ii :	
	$\phi_{in} = B_{in}A\cos\theta$	
	$\phi_{in} = \frac{\mu_0 N I}{I} \pi r^2 \cos \theta$ $\phi_{in} = \frac{\mu_0 N I}{I} \pi r^2$	
	[1 mark for the correct result]	
	Fig iii :	
	$\phi_{in} = B_{in}A\cos\theta$	
	$\phi_{in} = \frac{\mu_0 N I}{I} \pi R^2 \cos 30$	
	$\phi_{in} = \frac{1}{2I} \pi K^2$	
	[1 mark for the correct result]	

So the overall flux linked with the coil Q increases.[0.5 mark for correct conclusion of overall change in flux linked with Q]ii. Induced current through Q flows in the direction opposite to that in P, that is anti-clockwise direction.[0.5 mark for correct conclusion of the direction of induced current through coil Q]b. i. Flux linked with coil Q due to coil P decreases. Flux linked with coil Q due to coil R remains the same. Overall flux linked with the coil Q decreases.[0.5 mark for correct conclusion of overall change in flux linked with Q]ii. Induced current through Q flows in the direction same as that in P, that is clockwise direction.[0.5 mark for correct conclusion of the direction of induced current through coil Q]Q.94(a) The direction of the induced current through C1 : Anticlockwise[0.5 mark for the correct identification of directions through C1 and C2](b) The direction of the induced current through C2 : Clockwise[0.5 mark for the correct identification of directions through C1 and C2](b) The direction of the induced current through C2 : Clockwise[0.5 mark for the correct identification of directions through C1 and C2](c) The coil C2 are connected to each other, the induced emf in comparison to the coil 2 of a smaller area.Since coils C1 and C2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C1 remains as anticlockwise, whereas C2 becomes clockwise.[1 mark for the correct statement of reason]Q.95Change in flux, $\Delta \Phi = B. \Delta A$ A = (Area) _{Rectangle} + $\pi r^2/2 - [(Area)Rectangle - \pi r^2/2] = \pi r^2[1 mark for correct$	Q.93	a. i. Flux linked with coil Q due to coil P increases. Flux linked with coil Q due to coil R remains the same.	2
$ \begin{bmatrix} 0.5 \text{ mark for correct conclusion of overall change in flux linked with Q} \\ \text{ii. Induced current through Q flows in the direction opposite to that in P, that is anti-clockwise direction. \\ \\ \begin{bmatrix} 0.5 \text{ mark for correct conclusion of the direction of induced current through coil Q} \\ Q \end{bmatrix} \\ b. i. Flux linked with coil Q due to coil P decreases. Flux linked with coil Q due to coil R remains the same. Overall flux linked with the coil Q decreases. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		So the overall flux linked with the coil Q increases.	
ii. Induced current through Q flows in the direction opposite to that in P, that is anti-clockwise direction.[0.5 mark for correct conclusion of the direction of induced current through coil Q]b. i. Flux linked with coil Q due to coil P decreases. Flux linked with coil Q due to coil R remains the same. Overall flux linked with the coil Q decreases.[0.5 mark for correct conclusion of overall change in flux linked with Q]ii. Induced current through Q flows in the direction same as that in P, that is clockwise direction.[0.5 mark for correct conclusion of the direction of induced current through coil Q]Q.94(a) The direction of the induced current through C1 : Anticlockwise[0.5 mark for the correct identification of directions through C1 and C2](b) The direction of the induced current through C2 : Anticlockwise[0.5 mark for the correct identification of directions through C1 and C2](b) The direction of the induced current through C2 : Clockwise[0.5 mark for the correct identification of directions through C1 and C2](c) is a coil of a larger area, hence it will experience higher induced emf in comparison to the coil C2 of a smaller area.Since coils C1 and C2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C1 remains as anticlockwise, whereas C2 becomes clockwise.[1 mark for the correct statement of reason]Q.95Change in flux, $\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2$ [1 mark for correct calculation of change in the area] So change in flux, $\Delta \Phi = 0.5 \times \pi$ (0.2)² = 0.2 π Wb [1 mark for correct calculation o		[0.5 mark for correct conclusion of overall change in flux linked with Q]	
$ \begin{bmatrix} 0.5 \text{ mark for correct conclusion of the direction of induced current through coil Q] \\ b. i. Flux linked with coil Q due to coil P decreases. Flux linked with coil Q due to coil R remains the same. Overall flux linked with the coil Q decreases. \begin{bmatrix} 0.5 \text{ mark for correct conclusion of overall change in flux linked with Q] \\ ii. Induced current through Q flows in the direction same as that in P, that is clockwise direction. \begin{bmatrix} 0.5 \text{ mark for correct conclusion of the direction of induced current through coil Q] \\ \hline 0.5 \text{ mark for correct conclusion of the direction of induced current through coil Q] \\ \hline 0.5 \text{ mark for correct conclusion of the direction of induced current through coil Q] \\ \hline 0.94 (a) The direction of the induced current through C_1 : Anticlockwise \begin{bmatrix} 0.5 \text{ mark for the correct identification of directions through C_1 and C_2] \\ (b) The direction of the induced current through C_2 : Clockwise \begin{bmatrix} 0.5 \text{ mark for the correct identification of directions through C_1 and C_2] \\ (b) The direction of the induced current through C_2 : Clockwise \begin{bmatrix} 0.5 \text{ mark for the correct identification of directions through C_1 and C_2] \\ C_1 \text{ is a coil of a larger area, hence it will experience higher induced emf in comparison to the coil C_2 of a smaller area. Since coils C_1 and C_2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C_1 remains as anticlockwise, whereas C_2 becomes clockwise. \begin{bmatrix} 1 \text{ mark for correct calculation of change in the area} \\ So change in flux, \Delta \Phi = B. \Delta A \\ Here B = 0.5 T \\ \Delta A = (Area)_{\text{Nectangle}} + \pi r^2/2 - [(Area)_{\text{Nectangle}} - \pi r^2/2] = \pi r^2 \\ \begin{bmatrix} 1 \text{ mark for correct calculation of change in the area} \\ So change in flux, \\ \Delta \Phi = 0.5 x \pi (0.2)^2 = 0.2 \pi Wb \\ \begin{bmatrix} 1 \text{ mark for correct calculation of change in flux} \end{bmatrix} \right$		ii. Induced current through Q flows in the direction opposite to that in P, that is anti-clockwise direction.	
b. i. Flux linked with coil Q due to coil P decreases. Flux linked with coil Q due to coil R remains the same. Overall flux linked with the coil Q decreases. [0.5 mark for correct conclusion of overall change in flux linked with Q] ii. Induced current through Q flows in the direction same as that in P, that is clockwise direction. [0.5 mark for correct conclusion of the direction of induced current through coil Q] Q.94 (a) The direction of the induced current through C ₁ : Anticlockwise [0.5 mark for the correct identification of directions through C ₁ and C ₂] (b) The direction of the induced current through C ₁ : Anticlockwise [0.5 mark for the correct identification of directions through C ₁ and C ₂] (b) The direction of the induced current through C ₂ : Clockwise [0.5 mark for the correct identification of directions through C ₁ and C ₂] C ₁ is a coil of a larger area, hence it will experience higher induced emf in comparison to the coil C ₂ of a smaller area. Since coils C ₁ and C ₂ are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C ₁ remains as anticlockwise, whereas C ₂ becomes clockwise. [1 mark for the correct statement of reason] Q.95 Change in flux, $\Delta \Phi = B. \Delta A$ Here B = 0.5 T $\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2$ [1 mark for correct calculation of change in the area] So change in flux, $\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi Wb$ [1 mark for correct calculation of change in flux]		[0.5 mark for correct conclusion of the direction of induced current through coil Q]	
$ \begin{bmatrix} 0.5 \text{ mark for correct conclusion of overall change in flux linked with Q} \\ \text{ii. Induced current through Q flows in the direction same as that in P, that is clockwise direction. \\ \begin{bmatrix} 0.5 \text{ mark for correct conclusion of the direction of induced current through coil Q} \\ Q.94 \\ \text{(a) The direction of the induced current through C_1 : Anticlockwise} \\ \text{[0.5 mark for the correct identification of directions through C_1 and C_2]} \\ \text{(b) The direction of the induced current through C_2 : Clockwise} \\ \text{[0.5 mark for the correct identification of directions through C_1 and C_2]} \\ \text{(b) The direction of the induced current through C_2 : Clockwise} \\ \text{[0.5 mark for the correct identification of directions through C_1 and C_2]} \\ \text{(b) The direction of the induced current through C_2 : Clockwise} \\ \text{[0.5 mark for the correct identification of directions through C_1 and C_2]} \\ \text{C}_1 \text{ is a coil of a larger area, hence it will experience higher induced emf in comparison to the coil C_2 of a smaller area. \\ \text{Since coils C_1 and C_2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C_1 remains as anticlockwise, whereas C_2 becomes clockwise. \\ \text{[1 mark for the correct statement of reason]} \\ \text{Q.95 Change in flux, } \Delta \Phi = B. \Delta A \\ \text{Here B = 0.5 T} \\ \Delta A = (Area)_{\text{Rectangle}} + \pi r^2/2 - [(Area)_{\text{Rectangle}} - \pi r^2/2] = \pi r^2 \\ \text{[1 mark for correct calculation of change in the area]} \\ \text{So change in flux,} \\ \Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi \text{ Wb} \\ \text{[1 mark for correct calculation of change in flux]} \\ \end{array}$		b. i. Flux linked with coil Q due to coil P decreases. Flux linked with coil Q due to coil R remains the same. Overall flux linked with the coil Q decreases.	
ii. Induced current through Q flows in the direction same as that in P, that is clockwise direction.[0.5 mark for correct conclusion of the direction of induced current through coil Q]Q.94(a) The direction of the induced current through C1 : Anticlockwise [0.5 mark for the correct identification of directions through C1 and C2] (b) The direction of the induced current through C2 : Clockwise [0.5 mark for the correct identification of directions through C1 and C2] (c) The direction of the induced current through C2 : Clockwise [0.5 mark for the correct identification of directions through C1 and C2] (c) The direction of the induced current through C2 : Clockwise [0.5 mark for the correct identification of directions through C1 and C2] (C1 is a coil of a larger area, hence it will experience higher induced emf in comparison to the coil C2 of a smaller area.Since coils C1 and C2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C1 remains as anticlockwise, whereas C2 becomes clockwise. [1 mark for the correct statement of reason]2Q.95Change in flux, $\Delta \Phi = B$. ΔA Here B = 0.5 T $\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2$ [1 mark for correct calculation of change in the area] So change in flux, $\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi$ Wb [1 mark for correct calculation of change in flux]2		[0.5 mark for correct conclusion of overall change in flux linked with Q]	
$\begin{bmatrix} 0.5 \text{ mark for correct conclusion of the direction of induced current through coil } \\ Q.94 \\ (a) The direction of the induced current through C_1 : Anticlockwise \\ The direction of the induced current through C_2 : Anticlockwise \\ [0.5 mark for the correct identification of directions through C_1 and C_2] \\ (b) The direction of the induced current through C_1 : Anticlockwise \\ The direction of the induced current through C_2 : Clockwise \\ [0.5 mark for the correct identification of directions through C_1 and C_2] \\ C_1 is a coil of a larger area, hence it will experience higher induced emf in comparison to the coil C_2 of a smaller area. Since coils C_1 and C_2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C_1 remains as anticlockwise, whereas C_2 becomes clockwise. [1 mark for the correct statement of reason] Q.95 Change in flux, \Delta \Phi = B. \Delta AHere B = 0.5 T\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2[1 mark for correct calculation of change in the area]So change in flux, \Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi Wb[1 mark for correct calculation of change in flux]$		ii. Induced current through Q flows in the direction same as that in P, that is clockwise direction.	
Q.94(a) The direction of the induced current through C_1 : Anticlockwise2The direction of the induced current through C_2 : Anticlockwise[0.5 mark for the correct identification of directions through C_1 and C_2](b) The direction of the induced current through C_1 : AnticlockwiseThe direction of the induced current through C_2 : Clockwise[0.5 mark for the correct identification of directions through C_1 and C_2]C_1 is a coil of a larger area, hence it will experience higher induced emf in comparison to the coil C_2 of a smaller area.Since coils C_1 and C_2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C_1 remains as anticlockwise, whereas C_2 becomes clockwise.2Q.95Change in flux, $\Delta \Phi = B$. ΔA 2Here $B = 0.5 T$ $\Delta A = (Area)_{\text{Rectangle}} + \pi r^2/2 - [(Area)_{\text{Rectangle}} - \pi r^2/2] = \pi r^2$ 1[1 mark for correct calculation of change in the area]So change in flux, $\Delta \Phi = 0.5 x \pi (0.2)^2 = 0.2 \pi$ Wb1[1 mark for correct calculation of change in flux]11		[0.5 mark for correct conclusion of the direction of induced current through coil Q]	
The direction of the induced current through C_2 : Anticlockwise[0.5 mark for the correct identification of directions through C_1 and C_2](b) The direction of the induced current through C_1 : AnticlockwiseThe direction of the induced current through C_2 : Clockwise[0.5 mark for the correct identification of directions through C_1 and C_2] C_1 is a coil of a larger area, hence it will experience higher induced emf in comparison to the coil C_2 of a smaller area.Since coils C_1 and C_2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C_1 remains as anticlockwise, whereas C_2 becomes clockwise.[1 mark for the correct statement of reason]Q.95Change in flux, $\Delta \Phi = B$. ΔA Here $B = 0.5$ T $\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2$ [1 mark for correct calculation of change in the area] So change in flux, $\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi$ Wb [1 mark for correct calculation of change in flux]	Q.94	(a) The direction of the induced current through C_1 : Anticlockwise	2
$ \begin{bmatrix} 0.5 \text{ mark for the correct identification of directions through } C_1 \text{ and } C_2 \end{bmatrix} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$		The direction of the induced current through C_2 : Anticlockwise	
(b) The direction of the induced current through C_1 : AnticlockwiseThe direction of the induced current through C_2 : Clockwise[0.5 mark for the correct identification of directions through C_1 and C_2] C_1 is a coil of a larger area, hence it will experience higher induced emf in comparison to the coil C_2 of a smaller area.Since coils C_1 and C_2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C_1 remains as anticlockwise, whereas C_2 becomes clockwise.[1 mark for the correct statement of reason]Q.95Change in flux, $\Delta \Phi = B$. ΔA Here $B = 0.5$ T $\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2$ [1 mark for correct calculation of change in the area] So change in flux, $\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi$ Wb [1 mark for correct calculation of change in flux]		[0.5 mark for the correct identification of directions through C_1 and C_2]	
The direction of the induced current through C_2 : Clockwise $[0.5 mark for the correct identification of directions through C_1 and C_2]C_1 is a coil of a larger area, hence it will experience higher induced emf incomparison to the coil C_2 of a smaller area.Since coils C_1 and C_2 are connected to each other, the induced emf across coil C1will drive the current through the closed-loop. So the direction of the current inC_1 remains as anticlockwise, whereas C_2 becomes clockwise.[1 mark for the correct statement of reason]Q.95Change in flux, \Delta \Phi = B. \Delta AHere B = 0.5 T\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2[1 mark for correct calculation of change in the area]So change in flux,\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi Wb[1 mark for correct calculation of change in flux]$		(b) The direction of the induced current through C ₁ : Anticlockwise	
$\begin{bmatrix} 0.5 \text{ mark for the correct identification of directions through } C_1 \text{ and } C_2 \end{bmatrix}$ $\begin{bmatrix} 0.5 \text{ mark for the correct identification of directions through } C_1 \text{ and } C_2 \end{bmatrix}$ $\begin{bmatrix} C_1 is a coil of a larger area, hence it will experience higher induced emf in comparison to the coil C_2 of a smaller area.Since coils C_1 and C_2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C_1 remains as anticlockwise, whereas C_2 becomes clockwise.[1 mark for the correct statement of reason] \begin{bmatrix} 0.95 \\ Here B = 0.5 T \\ \Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2 \\ [1 mark for correct calculation of change in the area] \\ So change in flux, \Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \times Wb \\ [1 mark for correct calculation of change in flux] \end{bmatrix}$		The direction of the induced current through C_2 : Clockwise	
C1 is a coil of a larger area, hence it will experience higher induced emf in comparison to the coil C2 of a smaller area.Since coils C1 and C2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C1 remains as anticlockwise, whereas C2 becomes clockwise.[1 mark for the correct statement of reason]Q.95Change in flux, $\Delta \Phi = B$. ΔA Pere B = 0.5 T $\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2$ [1 mark for correct calculation of change in the area] So change in flux, 		[0.5 mark for the correct identification of directions through C_1 and C_2]	
Since coils C_1 and C_2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C_1 remains as anticlockwise, whereas C_2 becomes clockwise.2[1 mark for the correct statement of reason]2Q.95Change in flux, $\Delta \Phi = B$. ΔA 2Here $B = 0.5$ T $\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2$ [1 mark for correct calculation of change in the area] So change in flux, $\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi$ Wb [1 mark for correct calculation of change in flux]		C_1 is a coil of a larger area, hence it will experience higher induced emf in comparison to the coil C_2 of a smaller area.	
Image: [1 mark for the correct statement of reason]2Q.95Change in flux, $\Delta \Phi = B$. ΔA 2Here B = 0.5 T $\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2$ 1[1 mark for correct calculation of change in the area]5So change in flux, $\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi \text{ Wb}$ 1[1 mark for correct calculation of change in flux]1		Since coils C_1 and C_2 are connected to each other, the induced emf across coil C1 will drive the current through the closed-loop. So the direction of the current in C_1 remains as anticlockwise, whereas C_2 becomes clockwise.	
Q.95Change in flux, $\Delta \Phi = B$. ΔA 2Here B = 0.5 T $\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2$ [1 mark for correct calculation of change in the area]So change in flux, $\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi \text{ Wb}$ [1 mark for correct calculation of change in flux]		[1 mark for the correct statement of reason]	
Here B = 0.5 T $\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2$ [1 mark for correct calculation of change in the area] So change in flux, $\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi \text{ Wb}$ [1 mark for correct calculation of change in flux]	Q.95	Change in flux, $\Delta \Phi$ = B. ΔA	2
$\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2$ [1 mark for correct calculation of change in the area] So change in flux, $\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi \text{ Wb}$ [1 mark for correct calculation of change in flux]		Here B = 0.5 T	
[1 mark for correct calculation of change in the area] So change in flux, $\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi \text{ Wb}$ [1 mark for correct calculation of change in flux]		$\Delta A = (Area)_{Rectangle} + \pi r^2/2 - [(Area)_{Rectangle} - \pi r^2/2] = \pi r^2$	
So change in flux, $\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi \text{ Wb}$ [1 mark for correct calculation of change in flux]		[1 mark for correct calculation of change in the area]	
$\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi \text{ Wb}$ [1 mark for correct calculation of change in flux]		So change in flux,	
[1 mark for correct calculation of change in flux]		$\Delta \Phi = 0.5 \times \pi (0.2)^2 = 0.2 \pi \text{ Wb}$	
•		[1 mark for correct calculation of change in flux]	